
MLS 1

Potential Show-Stoppers for
Transactional Synchronization

Panel session, PPoPP’07, March 2007

Michael L. Scott U Rochester
Ali-Reza Adl-Tabatabai Intel Corp
David Dice Sun Microsystems
Christos Kozyrakis Stanford U
Christoph von Praun IBM Research

MLS 2

Uniprocessor Limits

 Heat wall
 Limited ILP

http://www.tomshardware.com/2005/11/21

MLS 3

Multicore is here to stay

 Dual-processor laptops now
 Quad-core desktops
 8-core servers
 Lots more to come
 Vendors waiting for apps

MLS 4

The Coming Crisis

 Parallelism common in high-end scientific computing
» done by experts, at great expense

 Also common in Internet servers
» “embarrassingly parallel”

 Has to migrate into the
mainstream
» programmers not up

to the task

http://tfp.killbots.com/?p=wall/@wall&name=&pag=3

MLS 5

What TM is

 A way to simplify some forms of synchronization
— an alternative to mutual exclusion locks

 A way to improve scalability with respect to
coarse-grain locks

MLS 6

What TM is not

 A way to make parallel programming easy
 A general-purpose synchronization mechanism
 A way to get free concurrency (or even scalability)

MLS 7

The basic idea is simple

 Programmer identifies atomic sections
 System serializes them, runs in parallel if it can

MLS 8

Some details are not simple

 I/O and other irreversible operations
 Open nesting: causality loops, compensating actions,

high-level concurrency control
 Weak isolation, privatization
 Early release
 Condition synchronization (retry, ...)
 Alternative paths (or else, ...)
 Customizable backoff or retry policies
 Synchronizers or other cross-transaction communication
 Priorities
 Segregation of transactional and nontransactional objects or

types, for the benefit of SW implementations

MLS 9

Not to mention

 Parallelization / identification of speculative tasks
 Ordering among transactions
 Performance tuning

» tools to find conflicts
» incentive to subdivide to avoid them

 When does this get uglier than locks?
(answer: very quickly)

 danger of overselling

MLS 10

Some personal experience

 Delaunay mesh application
» 2500 lines of C++
» barrier-separated private and

transactional phases
 RSTM library-based STM

» transactional types inherit from
transactional base class

» access through smart pointers

 Turned out to be a lot harder than I expected

MLS 11

A compiler would have helped
 Hide accessors, validators
 Generate transactional and non-transactional

versions of code as needed
 Let this be a smart pointer
 Leave immutable fields in place, for safe private

access; update read-only pointers as needed;
support safe break/return

 Catch loop-carried private value, potentially stale
private pointer

 Elide redundant checks

 All of this is straightforward

MLS 12

The Bottom Line

 Keep it simple!
 Don’t expect too much
 Plan on language integration

and compiler support

 Do not oversell !

www.cs.rochester.edu/meetings/TRANSACT07/

The Second ACM SIGPLAN
Workshop on Transactional Computing

To be held in conjunction with PODC 2007
Portland, Oregon, August 16, 2007

Submission deadline: April 15, 2007

